Step 2 Relate $\psi(x)$ to $\zeta'(s) / \zeta(s)$.

For x > 0 define

$$E(x) = \begin{cases} 1 & \text{if } x \ge 1, \\ 0 & \text{if } x < 1. \end{cases}$$

Then

$$\psi(x) = \sum_{n \le x} \Lambda(n) = \sum_{n=1}^{\infty} \Lambda(n) E\left(\frac{x}{n}\right).$$
(16)

Theorem 6.17 If x > 0 and c > 0 then

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{x^s}{s\left(s+1\right)} ds = \left(1 - \frac{1}{x}\right) E\left(x\right). \tag{17}$$

Proof Let C = C(0, R) be the circle centre the origin, radius $R > \max(1, c)$.

Let the vertical line $\operatorname{Re} s = c$ meet the circle at points $c \pm it_R$.

Let \mathcal{L}_R be the vertical line segment from $c - it_R$ to $c + it_R$ and let $\mathcal{C}_1, \mathcal{C}_2$ be the sections of the circle \mathcal{C} lying to the left and right of this line, respectively. so

$$C_1 = \{s \in C : \operatorname{Re} s \le c\}$$
 and $C_2 = \{s \in C : \operatorname{Re} s \ge c\}.$

For any regular path $\Gamma\subseteq\mathbb{C}$ write

$$I(\Gamma) = \frac{1}{2\pi i} \int_{\Gamma} \frac{x^s}{s \, (s+1)} ds,$$

so, in particular, the left hand side of (17) is $\lim_{R\to\infty} I(\mathcal{L}_R)$.

Assume $x \geq 1$ and consider $I(\mathcal{L}_R \cup \mathcal{C}_1)$.

Partial fractions show that

$$\frac{1}{s(s+1)} = \frac{1}{s} - \frac{1}{s+1} \tag{18}$$

so the integrand of $I(\mathcal{L}_R \cup \mathcal{C}_1)$ has two simple poles, at s = 0 and -1 which lie *inside* $\mathcal{L}_R \cup \mathcal{C}_1$ since R > 1. The residues at the poles are

$$\operatorname{Res}_{s=0} \frac{x^{s}}{s(s+1)} = \lim_{s \to 0} (s-0) \frac{x^{s}}{s(s+1)} = 1,$$

$$\operatorname{Res}_{s=-1} \frac{x^{s}}{s(s+1)} = \lim_{s \to -1} (s+1) \frac{x^{s}}{s(s+1)} = -\frac{1}{x}.$$

So, by Cauchy's Theorem, (stated as the integral around the boundary of a finite region equals the sum of the residues of poles within the region)

$$1 - \frac{1}{x} = I(\mathcal{L}_R \cup \mathcal{C}_1) = I(\mathcal{L}_R) + I(\mathcal{C}_1)$$
(19)

for all R > 1. We will be letting $R \to \infty$.

On the circle C_1 we have |s| = R and

$$|s+1| \ge |s| - 1 = R - 1,$$

having used the triangle inequality. Also, on C_1 we have $\operatorname{Re} s \leq c$ and thus, since we are assuming $x \geq 1$ we have $|x^s| = x^{\sigma} \leq x^c$. Hence

$$|I(C_1)| = \left| \frac{1}{2\pi i} \int_{C_1} \frac{x^s}{s(s+1)} ds \right| \le \frac{1}{2\pi} \int_{C_1} \frac{x^c}{R(R-1)} |ds|$$
$$\le \frac{1}{2\pi} \frac{x^c}{R(R-1)} 2\pi R$$
$$= \frac{x^c}{R-1},$$

which tends to zero as $R \to \infty$. Hence letting $R \to \infty$ gives

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{x^s}{s(s+1)} ds = \lim_{R \to \infty} I(\mathcal{L}_R)$$

$$= \lim_{R \to \infty} I(\mathcal{L}_R \cup \mathcal{C}_1)$$
by (19) and $\lim_{R \to \infty} I(\mathcal{C}_1) = 0$

$$= 1 - \frac{1}{x} = \left(1 - \frac{1}{x}\right) E(x)$$

since $x \ge 1$.

Assume next that 0 < x < 1 and consider $I(\mathcal{L}_R \cup \mathcal{C}_2)$.

The integrand (18) has **no** poles inside this contour and so, by Cauchy's Theorem, $I(\mathcal{L}_R \cup \mathcal{C}_2) = 0$ for all R.

On C_2 we have $\operatorname{Re} s \geq c$ but now x < 1 so $|x^s| = x^{\sigma} \leq x^c$ again. Thus we recover the same bound $|I(C_2)| \leq x^c/(R-1)$ which tends to 0 as $R \to \infty$. Hence, if x < 1, then

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{x^s}{s(s+1)} ds = \lim_{R \to \infty} I(\mathcal{L}_R)$$

$$= \lim_{R \to \infty} I(\mathcal{L}_R \cup \mathcal{C}_2)$$
by (19) and $\lim_{R \to \infty} I(\mathcal{C}_2) = 0$

$$= 0 = \left(1 - \frac{1}{x}\right) E(x)$$

$$0 \le x \le 1$$

since 0 < x < 1.

Question about the proof. Why do we choose the contour $\mathcal{L}_R \cup \mathcal{C}_1$ when $x \geq 1$ and $\mathcal{L}_R \cup \mathcal{C}_2$ when x < 1?

Answer In the proof we made use of $x^{\sigma} \leq x^{c}$.

If $x \geq 1$ then, to get an upper bound on x^{σ} , we need an *upper bound* σ , thus we keep s to the *left* of the line Re s = c, i.e. $s \in C_1$.

If x < 1 then to get an upper bound on x^{σ} we need a *lower bound* on σ , and so we keep s to the *right* of the line Re s = c, i.e. $s \in C_2$.

Theorem 6.18 Suppose that $\sum_{n=1}^{\infty} a_n n^{-s}$ is absolutely convergent for $\operatorname{Re} s > 1$ with sum D(s). Let $A(x) = \sum_{n \leq x} a_n$. Then for c > 1 and x > 1,

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} D(s) \, \frac{x^{s+1}}{s(s+1)} ds = \int_1^x A(t) \, dt.$$

(Hand waving For All) **If** we could justify the interchanges of infinite integrals with infinite sums **then** we could say

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \sum_{n=1}^{\infty} \frac{a_n}{n^s} \frac{x^{s+1}}{s(s+1)} ds = x \sum_{n=1}^{\infty} a_n \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{(x/n)^s}{s(s+1)} ds$$
$$= x \sum_{n=1}^{\infty} a_n \left(1 - \frac{n}{x}\right) E\left(\frac{x}{n}\right)$$
$$= \sum_{n \le x} a_n \left(x - n\right) = \int_1^x A(t) dt.$$

Proof Full details in the appendix.

A naive application of Theorem 6.18 would be with $D(s) = \zeta'(s) / \zeta(s)$, but, as we will see below, this has a pole at s = 1 which we would rather was not there.

Recall that if a function F is holomorphic in a region except for either a pole or zero at α then it can be written as

$$F(s) = g(s)(s - \alpha)^m,$$

with g(s) holomorphic in a region containing α , and $g(\alpha) \neq 0$. Here $m \in \mathbb{Z}$ is the *order* of the singularity and is > 0 if α is a zero, and < 0 if α is a pole.

For $s \neq \alpha$, the derivative of F is, by the Product Rule,

$$F'(s) = mg(s) (s - \alpha)^{m-1} + g'(s) (s - \alpha)^m$$
.

Then

$$\frac{F'(s)}{F(s)} = \frac{mg(s)(s-\alpha)^{m-1} + g'(s)(s-\alpha)^m}{g(s)(s-\alpha)^m} = \frac{m}{s-\alpha} + \frac{g'(s)}{g(s)}.$$
 (20)

The term g'(s)/g(s) is well-defined close to $s = \alpha$ since $g(\alpha) \neq 0$. The other term $m/(s-\alpha)$ has a simple pole (i.e. of order 1) at $s = \alpha$, with residue m.

We apply this with $F(s) = \zeta(s)$. From Theorem 6.12 we have

$$\begin{aligned} \zeta(s) &= 1 + \frac{1}{s-1} - s \int_{1}^{\infty} \frac{\{u\}}{u^{1+s}} du \end{aligned} (21) \\ &= \frac{1}{s-1} + h(s) = \frac{g(s)}{s-1}, \end{aligned}$$

where

$$h(s) = 1 - s \int_{1}^{\infty} \frac{\{u\}}{u^{1+s}} du$$
 and $g(s) = 1 + (s-1)h(s)$.

In the notation above, m = -1 and thus (20) gives

$$\frac{\zeta'(s)}{\zeta(s)} = -\frac{1}{s-1} + \frac{g'(s)}{g(s)}.$$

If this added to (21) we find that

$$\frac{\zeta'(s)}{\zeta(s)} + \zeta(s) = \left(-\frac{1}{s-1} + \frac{g'(s)}{g(s)}\right) + \left(\frac{1}{s-1} + h(s)\right) = \frac{g'(s)}{g(s)} + h(s),$$

i.e., the poles cancel!

Write

$$F(s) = \frac{\zeta'(s)}{\zeta(s)} + \zeta(s) = \sum_{n=1}^{\infty} \frac{(-\Lambda(n)+1)}{n^s},$$

for $\operatorname{Re} s > 1$. It is to F(s) that we apply Theorem 6.18, and in the notation of that result

$$A(x) = \sum_{n \le x} (-\Lambda(n) + 1) = -\psi(x) + [x].$$

Hence, for c > 1, Theorem 6.18 gives the **fundamental**

$$\int_{1}^{x} \left(\psi(t) - [t]\right) dt = -\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(s) \, \frac{x^{s+1} ds}{s \, (s+1)}.$$

From a problem sheet you were asked to show that

$$\int_{1}^{x} [t] dt = \frac{1}{2}x^{2} + O(x) \,.$$

Combine to get the **important**

$$\int_{1}^{x} \psi(t) dt = \frac{1}{2}x^{2} - \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(s) \frac{x^{s+1}ds}{s(s+1)} + O(x) ds$$

Appendix for Step 2

We here replace a handwaving justification of Theorem 6.18 given in the lectures by its proof.

Theorem 6.18 Suppose that $\sum_{n=1}^{\infty} a_n n^{-s}$ is absolutely convergent for $\operatorname{Re} s > 1$ with sum D(s). Let $A(x) = \sum_{n \leq x} a_n$. Then for c > 1 and x > 1,

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} D(s) \, \frac{x^{s+1}}{s\,(s+1)} ds = \int_1^x A(t) \, dt.$$
(22)

Proof Write

$$x^s D(s) = G(s) + H(s) \,,$$

where

$$G(s) = \sum_{n \le x} a_n \left(\frac{x}{n}\right)^s$$
 and $H(s) = \sum_{n > x} a_n \left(\frac{x}{n}\right)^s$

Since G(s) is only a *finite* sum we are justified in interchanging the summation and integration in

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} G(s) \frac{x}{s(s+1)} ds = x \sum_{n \le x} a_n \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{(x/n)^s}{s(s+1)} ds$$
$$= x \sum_{n \le x} a_n \left(1 - \frac{n}{x}\right) \quad \text{by Theorem 6.17,}$$
$$= \sum_{n \le x} a_n \left(x - n\right) = \int_1^x A(t) dt.$$

Thus G(s) has given the right hand side of (22), so the remaining $H(s) = x^s D(s) - G(s)$ will have to contribute nothing!

Consider now

$$\frac{1}{2\pi i} \int_{\mathcal{L}_R \cup \mathcal{C}_2} H(s) \, \frac{x}{s \, (s+1)} ds,\tag{23}$$

with notation from the proof of Theorem 6.17. Inside the contour $\mathcal{L}_R \cup \mathcal{C}_2$, the series H(s) differs from D(s) by only a finite number of terms and is thus absolutely convergent and has no poles. Therefore, by Cauchy's Theorem, the integral (23) is zero, i.e.

$$0 = \frac{1}{2\pi i} \int_{\mathcal{C}_2} H(s) \frac{x}{s(s+1)} ds + \frac{1}{2\pi i} \int_{\mathcal{L}_R} H(s) \frac{x}{s(s+1)} ds.$$
(24)

We have chosen C_2 instead of C_1 because for the terms $(x/n)^s$ seen in H(s), we have n > x, i.e. x/n < 1 and so to get an *upper* bound on $(x/n)^{\sigma}$ we need a *lower* bound on σ . Thus we keep s to the *right* of the line $\operatorname{Re} s = c$, in other words, $s \in C_2$. For such s we get

$$\left| \left(\frac{x}{n}\right)^s \right| = \left(\frac{x}{n}\right)^\sigma \le \left(\frac{x}{n}\right)^c.$$

Justify the following use of the triangle inequality on an infinite sum by the fact that $\sum_{n=1}^{\infty} a_n n^{-s}$ converges absolutely. So

$$|H(s)| = \left|\sum_{n>x} a_n \left(\frac{x}{n}\right)^s\right| \le \sum_{n>x} |a_n| \left(\frac{x}{n}\right)^\sigma \le \sum_{n>x} |a_n| \left(\frac{x}{n}\right)^c$$

For H(s) we have, by assumption, that $\sum_{n>x} |a_n| / n^c \leq \sum_{n=1}^{\infty} |a_n| / n^c$, which converges, to M say. Hence

$$|H(s)| \le x^c \sum_{n>x} \frac{|a_n|}{n^c} \le Mx^c.$$

Using the arguments seen in the proof of Theorem 6.17,

$$\left|\frac{1}{2\pi i}\int_{\mathcal{C}_2}H(s)\,\frac{x}{s\,(s+1)}ds\right|\leq\frac{Mx^{c+1}}{R-1},$$

which tends to 0 as $R \to \infty$. Thus, from (24),

$$0 = \lim_{R \to \infty} \frac{1}{2\pi i} \int_{\mathcal{L}_R} H(s) \frac{x}{s(s+1)} ds = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} H(s) \frac{x}{s(s+1)} ds$$

as required.