Step 2 Relate $\psi(x)$ to $\zeta^{\prime}(s) / \zeta(s)$.
For $x>0$ define

$$
E(x)= \begin{cases}1 & \text { if } x \geq 1 \\ 0 & \text { if } x<1\end{cases}
$$

Then

$$
\begin{equation*}
\psi(x)=\sum_{n \leq x} \Lambda(n)=\sum_{n=1}^{\infty} \Lambda(n) E\left(\frac{x}{n}\right) \tag{16}
\end{equation*}
$$

Theorem 6.17 If $x>0$ and $c>0$ then

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{x^{s}}{s(s+1)} d s=\left(1-\frac{1}{x}\right) E(x) \tag{17}
\end{equation*}
$$

Proof Let $\mathcal{C}=\mathcal{C}(0, R)$ be the circle centre the origin, radius $R>\max (1, c)$.

Let the vertical line Re $s=c$ meet the circle at points $c \pm i t_{R}$.
Let \mathcal{L}_{R} be the vertical line segment from $c-i t_{R}$ to $c+i t_{R}$ and let $\mathcal{C}_{1}, \mathcal{C}_{2}$ be the sections of the circle \mathcal{C} lying to the left and right of this line, respectively. so

$$
\mathcal{C}_{1}=\{s \in \mathcal{C}: \operatorname{Re} s \leq c\} \quad \text { and } \quad \mathcal{C}_{2}=\{s \in \mathcal{C}: \operatorname{Re} s \geq c\}
$$

For any regular path $\Gamma \subseteq \mathbb{C}$ write

$$
I(\Gamma)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{x^{s}}{s(s+1)} d s
$$

so, in particular, the left hand side of (17) is $\lim _{R \rightarrow \infty} I\left(\mathcal{L}_{R}\right)$.

Assume $x \geq 1$ and consider $I\left(\mathcal{L}_{R} \cup \mathcal{C}_{1}\right)$.

Partial fractions show that

$$
\begin{equation*}
\frac{1}{s(s+1)}=\frac{1}{s}-\frac{1}{s+1} \tag{18}
\end{equation*}
$$

so the integrand of $I\left(\mathcal{L}_{R} \cup \mathcal{C}_{1}\right)$ has two simple poles, at $s=0$ and -1 which lie inside $\mathcal{L}_{R} \cup \mathcal{C}_{1}$ since $R>1$. The residues at the poles are

$$
\begin{aligned}
& \operatorname{Res}_{s=0} \frac{x^{s}}{s(s+1)}=\lim _{s \rightarrow 0}(s-0) \frac{x^{s}}{s(s+1)}=1 \\
& \operatorname{Res}_{s=-1} \frac{x^{s}}{s(s+1)}=\lim _{s \rightarrow-1}(s+1) \frac{x^{s}}{s(s+1)}=-\frac{1}{x} .
\end{aligned}
$$

So, by Cauchy's Theorem, (stated as the integral around the boundary of a finite region equals the sum of the residues of poles within the region)

$$
\begin{equation*}
1-\frac{1}{x}=I\left(\mathcal{L}_{R} \cup \mathcal{C}_{1}\right)=I\left(\mathcal{L}_{R}\right)+I\left(\mathcal{C}_{1}\right) \tag{19}
\end{equation*}
$$

for all $R>1$. We will be letting $R \rightarrow \infty$.
On the circle \mathcal{C}_{1} we have $|s|=R$ and

$$
|s+1| \geq|s|-1=R-1
$$

having used the triangle inequality. Also, on \mathcal{C}_{1} we have $\operatorname{Re} s \leq c$ and thus, since we are assuming $x \geq 1$ we have $\left|x^{s}\right|=x^{\sigma} \leq x^{c}$. Hence

$$
\begin{aligned}
\left|I\left(\mathcal{C}_{1}\right)\right| & =\left|\frac{1}{2 \pi i} \int_{\mathcal{C}_{1}} \frac{x^{s}}{s(s+1)} d s\right| \leq \frac{1}{2 \pi} \int_{\mathcal{C}_{1}} \frac{x^{c}}{R(R-1)}|d s| \\
& \leq \frac{1}{2 \pi} \frac{x^{c}}{R(R-1)} 2 \pi R \\
& =\frac{x^{c}}{R-1}
\end{aligned}
$$

which tends to zero as $R \rightarrow \infty$. Hence letting $R \rightarrow \infty$ gives

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{x^{s}}{s(s+1)} d s= & \lim _{R \rightarrow \infty} I\left(\mathcal{L}_{R}\right) \\
= & \lim _{R \rightarrow \infty} I\left(\mathcal{L}_{R} \cup \mathcal{C}_{1}\right) \\
& \quad \text { by }(19) \text { and } \lim _{R \rightarrow \infty} I\left(\mathcal{C}_{1}\right)=0 \\
= & 1-\frac{1}{x}=\left(1-\frac{1}{x}\right) E(x)
\end{aligned}
$$

since $x \geq 1$.
Assume next that $0<x<1$ and consider $I\left(\mathcal{L}_{R} \cup \mathcal{C}_{2}\right)$.

The integrand (18) has no poles inside this contour and so, by Cauchy's Theorem, $I\left(\mathcal{L}_{R} \cup \mathcal{C}_{2}\right)=0$ for all R.

On \mathcal{C}_{2} we have $\operatorname{Re} s \geq c$ but now $x<1$ so $\left|x^{s}\right|=x^{\sigma} \leq x^{c}$ again. Thus we recover the same bound $\left|I\left(\mathcal{C}_{2}\right)\right| \leq x^{c} /(R-1)$ which tends to 0 as $R \rightarrow \infty$.
Hence, if $x<1$, then

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{x^{s}}{s(s+1)} d s= & \lim _{R \rightarrow \infty} I\left(\mathcal{L}_{R}\right) \\
= & \lim _{R \rightarrow \infty} I\left(\mathcal{L}_{R} \cup \mathcal{C}_{2}\right) \\
& \quad \text { by (19) and } \lim _{R \rightarrow \infty} I\left(\mathcal{C}_{2}\right)=0 \\
= & 0=\left(1-\frac{1}{x}\right) E(x)
\end{aligned}
$$

since $0<x<1$.
Question about the proof. Why do we choose the contour $\mathcal{L}_{R} \cup \mathcal{C}_{1}$ when $x \geq 1$ and $\mathcal{L}_{R} \cup \mathcal{C}_{2}$ when $x<1$?
Answer In the proof we made use of $x^{\sigma} \leq x^{c}$.
If $x \geq 1$ then, to get an upper bound on x^{σ}, we need an upper bound σ, thus we keep s to the left of the line $\operatorname{Re} s=c$, i.e. $s \in \mathcal{C}_{1}$.
If $x<1$ then to get an upper bound on x^{σ} we need a lower bound on σ, and so we keep s to the right of the line $\operatorname{Re} s=c$, i.e. $s \in \mathcal{C}_{2}$.

Theorem 6.18 Suppose that $\sum_{n=1}^{\infty} a_{n} n^{-s}$ is absolutely convergent for $\operatorname{Re} s>$ 1 with sum $D(s)$. Let $A(x)=\sum_{n \leq x} a_{n}$. Then for $c>1$ and $x>1$,

$$
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} D(s) \frac{x^{s+1}}{s(s+1)} d s=\int_{1}^{x} A(t) d t
$$

(Hand waving For All) If we could justify the interchanges of infinite integrals with infinite sums then we could say

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}} \frac{x^{s+1}}{s(s+1)} d s & =x \sum_{n=1}^{\infty} a_{n} \frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{(x / n)^{s}}{s(s+1)} d s \\
& =x \sum_{n=1}^{\infty} a_{n}\left(1-\frac{n}{x}\right) E\left(\frac{x}{n}\right) \\
& =\sum_{n \leq x} a_{n}(x-n)=\int_{1}^{x} A(t) d t
\end{aligned}
$$

Proof Full details in the appendix.
A naive application of Theorem 6.18 would be with $D(s)=\zeta^{\prime}(s) / \zeta(s)$, but, as we will see below, this has a pole at $s=1$ which we would rather was not there.

Recall that if a function F is holomorphic in a region except for either a pole or zero at α then it can be written as

$$
F(s)=g(s)(s-\alpha)^{m}
$$

with $g(s)$ holomorphic in a region containing α, and $g(\alpha) \neq 0$. Here $m \in \mathbb{Z}$ is the order of the singularity and is >0 if α is a zero, and <0 if α is a pole.

For $s \neq \alpha$, the derivative of F is, by the Product Rule,

$$
F^{\prime}(s)=m g(s)(s-\alpha)^{m-1}+g^{\prime}(s)(s-\alpha)^{m}
$$

Then

$$
\begin{equation*}
\frac{F^{\prime}(s)}{F(s)}=\frac{m g(s)(s-\alpha)^{m-1}+g^{\prime}(s)(s-\alpha)^{m}}{g(s)(s-\alpha)^{m}}=\frac{m}{s-\alpha}+\frac{g^{\prime}(s)}{g(s)} . \tag{20}
\end{equation*}
$$

The term $g^{\prime}(s) / g(s)$ is well-defined close to $s=\alpha$ since $g(\alpha) \neq 0$. The other term $m /(s-\alpha)$ has a simple pole (i.e. of order 1) at $s=\alpha$, with residue m.

We apply this with $F(s)=\zeta(s)$. From Theorem 6.12 we have

$$
\begin{align*}
\zeta(s) & =1+\frac{1}{s-1}-s \int_{1}^{\infty} \frac{\{u\}}{u^{1+s}} d u \tag{21}\\
& =\frac{1}{s-1}+h(s)=\frac{g(s)}{s-1}
\end{align*}
$$

where

$$
h(s)=1-s \int_{1}^{\infty} \frac{\{u\}}{u^{1+s}} d u \quad \text { and } \quad g(s)=1+(s-1) h(s) .
$$

In the notation above, $m=-1$ and thus (20) gives

$$
\frac{\zeta^{\prime}(s)}{\zeta(s)}=-\frac{1}{s-1}+\frac{g^{\prime}(s)}{g(s)} .
$$

If this added to (21) we find that

$$
\frac{\zeta^{\prime}(s)}{\zeta(s)}+\zeta(s)=\left(-\frac{1}{s-1}+\frac{g^{\prime}(s)}{g(s)}\right)+\left(\frac{1}{s-1}+h(s)\right)=\frac{g^{\prime}(s)}{g(s)}+h(s),
$$

i.e., the poles cancel!

Write

$$
F(s)=\frac{\zeta^{\prime}(s)}{\zeta(s)}+\zeta(s)=\sum_{n=1}^{\infty} \frac{(-\Lambda(n)+1)}{n^{s}}
$$

for $\operatorname{Re} s>1$. It is to $F(s)$ that we apply Theorem 6.18, and in the notation of that result

$$
A(x)=\sum_{n \leq x}(-\Lambda(n)+1)=-\psi(x)+[x] .
$$

Hence, for $c>1$, Theorem 6.18 gives the fundamental

$$
\int_{1}^{x}(\psi(t)-[t]) d t=-\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F(s) \frac{x^{s+1} d s}{s(s+1)} .
$$

From a problem sheet you were asked to show that

$$
\int_{1}^{x}[t] d t=\frac{1}{2} x^{2}+O(x) .
$$

Combine to get the important

$$
\int_{1}^{x} \psi(t) d t=\frac{1}{2} x^{2}-\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F(s) \frac{x^{s+1} d s}{s(s+1)}+O(x) .
$$

Appendix for Step 2

We here replace a handwaving justification of Theorem 6.18 given in the lectures by its proof.
Theorem 6.18 Suppose that $\sum_{n=1}^{\infty} a_{n} n^{-s}$ is absolutely convergent for $\operatorname{Re} s>$ 1 with sum $D(s)$. Let $A(x)=\sum_{n \leq x} a_{n}$. Then for $c>1$ and $x>1$,

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} D(s) \frac{x^{s+1}}{s(s+1)} d s=\int_{1}^{x} A(t) d t \tag{22}
\end{equation*}
$$

Proof Write

$$
x^{s} D(s)=G(s)+H(s)
$$

where

$$
G(s)=\sum_{n \leq x} a_{n}\left(\frac{x}{n}\right)^{s} \quad \text { and } \quad H(s)=\sum_{n>x} a_{n}\left(\frac{x}{n}\right)^{s}
$$

Since $G(s)$ is only a finite sum we are justified in interchanging the summation and integration in

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} G(s) \frac{x}{s(s+1)} d s & =x \sum_{n \leq x} a_{n} \frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \frac{(x / n)^{s}}{s(s+1)} d s \\
& =x \sum_{n \leq x} a_{n}\left(1-\frac{n}{x}\right) \quad \text { by Theorem 6.17 } \\
& =\sum_{n \leq x} a_{n}(x-n)=\int_{1}^{x} A(t) d t
\end{aligned}
$$

Thus $G(s)$ has given the right hand side of (22), so the remaining $H(s)=$ $x^{s} D(s)-G(s)$ will have to contribute nothing!

Consider now

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\mathcal{L}_{R} \cup \mathcal{C}_{2}} H(s) \frac{x}{s(s+1)} d s \tag{23}
\end{equation*}
$$

with notation from the proof of Theorem 6.17. Inside the contour $\mathcal{L}_{R} \cup \mathcal{C}_{2}$, the series $H(s)$ differs from $D(s)$ by only a finite number of terms and is thus absolutely convergent and has no poles. Therefore, by Cauchy's Theorem, the integral (23) is zero, i.e.

$$
\begin{equation*}
0=\frac{1}{2 \pi i} \int_{\mathcal{C}_{2}} H(s) \frac{x}{s(s+1)} d s+\frac{1}{2 \pi i} \int_{\mathcal{L}_{R}} H(s) \frac{x}{s(s+1)} d s \tag{24}
\end{equation*}
$$

We have chosen \mathcal{C}_{2} instead of \mathcal{C}_{1} because for the terms $(x / n)^{s}$ seen in $H(s)$, we have $n>x$, i.e. $x / n<1$ and so to get an upper bound on $(x / n)^{\sigma}$ we need a lower bound on σ. Thus we keep s to the right of the line $\operatorname{Re} s=c$, in other words, $s \in \mathcal{C}_{2}$. For such s we get

$$
\left|\left(\frac{x}{n}\right)^{s}\right|=\left(\frac{x}{n}\right)^{\sigma} \leq\left(\frac{x}{n}\right)^{c} .
$$

Justify the following use of the triangle inequality on an infinite sum by the fact that $\sum_{n=1}^{\infty} a_{n} n^{-s}$ converges absolutely. So

$$
|H(s)|=\left|\sum_{n>x} a_{n}\left(\frac{x}{n}\right)^{s}\right| \leq \sum_{n>x}\left|a_{n}\right|\left(\frac{x}{n}\right)^{\sigma} \leq \sum_{n>x}\left|a_{n}\right|\left(\frac{x}{n}\right)^{c}
$$

For $H(s)$ we have, by assumption, that $\sum_{n>x}\left|a_{n}\right| / n^{c} \leq \sum_{n=1}^{\infty}\left|a_{n}\right| / n^{c}$, which converges, to M say. Hence

$$
|H(s)| \leq x^{c} \sum_{n>x} \frac{\left|a_{n}\right|}{n^{c}} \leq M x^{c} .
$$

Using the arguments seen in the proof of Theorem 6.17,

$$
\left|\frac{1}{2 \pi i} \int_{\mathcal{C}_{2}} H(s) \frac{x}{s(s+1)} d s\right| \leq \frac{M x^{c+1}}{R-1}
$$

which tends to 0 as $R \rightarrow \infty$. Thus, from (24),

$$
0=\lim _{R \rightarrow \infty} \frac{1}{2 \pi i} \int_{\mathcal{L}_{R}} H(s) \frac{x}{s(s+1)} d s=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} H(s) \frac{x}{s(s+1)} d s
$$

as required.

